
DRAFT March 20, 2012

A subexponential lower bound for the Least Recently
Considered rule for solving linear programs and games

Oliver Friedmann
Department of Computer Science, University of Munich, Germany

Oliver.Friedmann@gmail.com

The simplex algorithm is among the most widely used algorithms for solving linear programs in
practice. Most pivoting rules are known, however, to need an exponential number of steps to solve
some linear programs. No non-polynomial lower bounds were known, prior to this work, for Cun-
ningham’s Least Recently Considered rule [5], which belongs to the family of history-based rules.

Also known as the ROUND-ROBIN rule, Cunningham’s pivoting method fixes an initial ordering
on all variables first, and then selects the improving variables in a round-robin fashion. We provide
the first subexponential (i.e., of the form 2Ω(

√
n)) lower bound for this rule in a concrete setting.

Our lower bound is obtained by utilizing connections between pivoting steps performed by
simplex-based algorithms and improving switches performed by policy iteration algorithms for 1-
player and 2-player games. We start by building 2-player parity games (PGs) on which the policy
iteration with the ROUND-ROBIN rule performs a subexponential number of iterations. We then
transform the parity games into 1-player Markov Decision Processes (MDPs) which correspond al-
most immediately to concrete linear programs.

1 Introduction

The simplex method, developed by Dantzig in 1947 (see [6]), is among the most widely used algorithms
for solving linear programs. One of the most important parameterizations of a simplex algorithm is the
pivoting rule it employs. It specifies which non-basic variable is to enter the basis at each iteration of the
algorithm. Although simplex-based algorithms perform very well in practice, essentially all deterministic
pivoting rules are known to lead to an exponential number of pivoting steps on some LPs [23], [20], [1]
and [17].

Kalai [21, 22] and Matoušek, Sharir and Welzl [24] devised randomized pivoting rules that never
require more than an expected subexponential number of pivoting steps to solve any linear program.
The most prominent randomized pivoting rules probably are RANDOM-FACET [21, 22, 24] as well as
RANDOM-EDGE [4, 15, 16], for which, until recently [13], no non-trivial lower bounds given by concrete
linear programs were known.

Along the same lines, we have shown a subexponential lower bound [14] for the rule suggested by
Zadeh [27] (see also [8]). Also known as the LEAST-ENTERED rule, Zadeh’s pivoting method belongs
to the family of history-based improvement rules, which among all improving pivoting steps from the
current basic feasible solution chooses one which has been entered least often.

Here, we consider now a related history-based improving rule, which is known as Cunningham’s
ROUND-ROBIN rule or as Least Recently Considered rule [5]. It fixes an initial ordering on all variables
first, and then selects the improving variables in a round-robin fashion. We provide the first subexponen-
tial (i.e., of the form 2Ω(

√
n)) lower bound for the this rule.

2 A subexponential lower bound for the Least Recently Considered rule

Techniques used. The linear program on which ROUND-ROBIN performs a subexponential number
of iterations is obtained using the close relation between simplex-type algorithms for solving linear
programs and policy iteration (also known as strategy improvement) algorithms for solving certain 2-
player and 1-player games.

This line of work was started by showing that standard strategy iteration [26] for parity games [18]
may require an exponential number of iterations to solve them [10]. Fearnley [9] transferred the lower
bound construction for parity games to Markov Decision Processes (MDPs) [19], an extremely important
and well-studied family of stochastic 1-player games.

In [12], we recently constructed PGs on which the RANDOM-FACET algorithm performs an expected
subexponential number of iterations. In [13], we applied Fearnley’s technique to transform these PGs
into MDPs, and included an additional lower bound construction for the RANDOM-EDGE algorithm.

The problem of solving an MDP, i.e., finding the optimal control policy and the optimal values of all
states of the MDP, can be cast as a linear program. More precisely, the improving switches performed by
the (abstract) ROUND-ROBIN algorithm applied to an MDP corresponds directly to the steps performed
by the ROUND-ROBIN pivoting rule on the corresponding linear program.

Our results. We construct a family of concrete linear programs on which the number of iterations
performed by ROUND-ROBIN is 2Ω(

√
n), where n is the number of variables.

As the translation of our PGs to MDPs is a relatively simple step, we directly present the MDP
version of our construction. (The original PGs from which our MDPs were derived can be found in
Appendix B.) Hence, our construction can be understood without knowing anything about PGs.

The rest of this paper is organized as follows. In Section 2 we give a brief introduction to Markov De-
cision Processes (MDPs) and the primal linear programs corresponding to them. In Section 3 we review
the policy iteration and the simplex algorithms, the relation between improving switches and pivoting
steps, and Cunningham’s ROUND-ROBIN pivoting rule. In Section 4, which is the main section of this
paper, we describe our lower bound construction for ROUND-ROBIN. Many of the details are deferred,
due to lack of space, to appendices. Particularly all proofs of Section 4 can be found in Appendix A. We
end in Section 5 with some concluding remarks and open problems.

2 Markov Decision Processes and their linear programs

Markov decision processes (MDPs) provide a mathematical model for sequential decision making under
uncertainty. They are employed to model stochastic optimization problems in various areas ranging
from operations research, machine learning, artificial intelligence, economics and game theory. For an
in-depth coverage of MDPs, see the books of Howard [19], Derman [7], Puterman [25] and Bertsekas
[3].

Formally, an MDP is defined by its underlying graph G=(V0,VR,E0,ER,r, p). Here, V0 is the set of
vertices (states) operated by the controller, also known as player 0, and VR is a set of randomization
vertices corresponding to the probabilistic actions of the MDP. We let V = V0 ∪VR. The edge set E0 ⊆
V0×VR corresponds to the actions available to the controller. The edge set ER ⊆ VR×V0 corresponds
to the probabilistic transitions associated with each action. The function r : E0 → R is the immediate
reward function. The function p : ER→ [0,1] specifies the transition probabilities. For every u ∈VR, we
have ∑v:(u,v)∈ER p(u,v) = 1, i.e., the probabilities of all edges emanating from each vertex of VR sum up
to 1. As defined, the graph G is bipartite, but one can relax this condition and allow edges from V0 to V0
that correspond to deterministic actions.

Oliver Friedmann 3

A policy σ is a function σ : V0→V that selects for each vertex u ∈V0 a target node v corresponding
to an edge (u,v) ∈ E0, i.e. (u,σ(u)) ∈ E0 wWe assume that each vertex u ∈V0 has at least one outgoing
edge). There are several objectives for MDPs; we consider the expected total reward objective here. The
values VALσ (u) of the vertices under σ are defined as the unique solutions of the following set of linear
equations:

VALσ (u) =

{
VALσ (v)+ r(u,v) if u ∈V0 and σ(u) = v

∑v:(u,v)∈ER p(u,v)VALσ (v) if u ∈VR

together with the condition that VALσ (u) sum up to 0 on each irreducible recurrent class of the Markov
chain defined by σ .

All MDPs considered in this paper satisfy the unichain condition (see [25]). It states that the Markov
chain obtained from each policy σ has a single irreducible recurrent class.

Optimal policies for MDPs that satisfy the unichain condition can be found by solving the following
(primal) linear program

(P)
max ∑(u,v)∈E0 r(u,v)x(u,v)
s.t. ∑(u,v)∈E x(u,v)−∑(v,w)∈E0,(w,u)∈ER p(w,u)x(v,w) = 1, u ∈V0

x(u,v) ≥ 0 , (u,v) ∈ E0

The variable x(u,v), for (u,v) ∈ E0, stands for the probability (frequency) of using the edge (action)
(u,v). The constraints of the linear program are conservation constraints that state that the probability of
entering a vertex u is equal to the probability of exiting u. It is not difficult to check that the basic feasible
solutions (bfs’s) of (P) correspond directly to policies of the MDP. For each policy σ we can define a
feasible setting of primal variables x(u,v), for (u,v) ∈ E0, such that x(u,v) > 0 only if σ(u) = (u,v).
Conversely, for every bfs x(u,v) we can define a corresponding policy σ . It is well known that the policy
corresponding to an optimal bfs of (P) is an optimal policy of the MDP. (See, e.g., [25].)

It should be noted that all pivoting steps performed on these linear programs are non-degenerate,
due to the fact the we consider the expected total reward criterion here. The lower bound construction
of this paper also works when applied to the discounted reward criterion (for large enough discount
factors), and also for the limiting average reward criterion. However, in the latter case, all pivoting steps
performed on the induced linear programs are degenerate.

3 Policy iteration algorithms and simplex algorithms

Howard’s [19] policy iteration algorithm is the most widely used algorithm for solving MDPs. It is
closely related to the simplex algorithm.

The algorithm starts with some initial policy σ0 and generates an improving sequence σ0,σ1, . . . ,σN

of policies, ending with an optimal policy σN . In each iteration the algorithm first evaluates the current
policy σi, by computing the values VALσi(u) of all vertices. An edge (u,v′) ∈ E0, such that σi(u) 6= v′

is then said to be an improving switch if and only if either VALσi(v
′) > VALσi(u). Given a policy σ , we

denote the set of improving switches by Iσ .
A crucial property of policy iteration is that σ is an optimal policy if and only if there are no improv-

ing switches with respect to it (see, e.g., [19], [25]). Furthermore, if (u,v′) ∈ Iσ is an improving switch
w.r.t. σ , and σ ′ is defined as σ [(u,v′)] (i.e., σ ′(u) = v′ and σ ′(w) = σ(w) for all w 6= u), then σ ′ is strictly
better than σ , in the sense that for every u ∈ V0, we have VALσ ′(u) ≥ VALσ (u), with a strict inequality
for at least one vertex u ∈V0.

4 A subexponential lower bound for the Least Recently Considered rule

Policy iteration algorithms that perform a single switch at each iteration – like ROUND-ROBIN– are,
in fact, simplex algorithms. Each policy σ of an MDP immediately gives rise to a feasible solution
x(u,v) of the primal linear program (P); use σ to define a Markov chain and let x(u,v) be the ‘steady-
state’ probability that the edge (action) (u,v) is used. In particular, if σ(u) 6= v, then x(u,v) = 0.

Cunningham’s ROUND-ROBIN pivoting rule is a deterministic, memorizing improvement rule which
fixes an initial ordering on all variables first, and then selects the improving variables in a round-robin
fashion. When applied to the primal linear program of an MDP, it is equivalent to the variant of the policy
iteration algorithm, in which an initial ordering on the edges is fixed first, and the improving switch is
chosen among all improving switches in a round-robin fashion. This is the foundation of our lower bound
for the ROUND-ROBIN rule.

We describe Cunningham’s pivoting rule now formally in the context of MDPs. We assume that
we are given a total ordering ≺ on the player 0 edges of the MDP. As a memorization structure, we
remember the last edge that has been applied.

Given a non-empty subset of player 0 edges /0 6= F ⊆ E0 and a player 0 edge e ∈ E0, we define a
successor operator as follows:

succ≺(e,F) :=

{
min≺{e′ ∈ F | e� e′} if {e′ ∈ F | e� e′} 6= /0
min≺{e′ ∈ F | e′ � e} otherwise

See Algorithm 1 for a pseudo-code specification of the ROUND-ROBIN pivoting rule for solving
MDPs.

Algorithm 1 Cunningham’s Improvement Algorithm
1: procedure ROUND-ROBIN(G,σ ,≺,e)
2: while Iσ 6= /0 do
3: e← succ≺(e, Iσ)
4: σ ← σ [e]
5: end while
6: end procedure

Let (σ1,e1), . . ., (σn,en) be a trace of the algorithm w.r.t. some selection ordering ≺. We write
(σ ,e);≺ (σ ′,e′) iff there are i < j s.t. (σ ,e) = (σi,ei) and (σ ′,e′) = (σ j,e j).

In the original specification of Cunningham’s algorithm [5], there are no clear objectives how to
select the ordering on the edges or how to select the initial edge e. In fact, we know that the asymptotic
behavior of Cunningham’s improvement rule highly depends on the method that is used to find the
ordering, at least in the world of MDPs, PGs and policy iteration for games in general. We have the
following theorem which is easy to verify (the idea is that there is at least one improving switch towards
the optimal policy in each step).
Theorem 1. Let G be an MDP with n nodes and σ0 be a policy. There is a sequence policies σ0,σ1, . . . ,σN

and a sequence of different switches e1,e2, . . . ,eN with N ≤ n s.t. σN−1 is optimal, σi+1 = σi[ei+1] and
ei+1 is an σi-improving switch.

Since all switches are different in the sequence, it follows immediately that there is always a way to
select an ordering that results in a linear number of pivoting steps to solve an MDP with Cunningham’s
improvement rule. However, there is no obvious method on how to efficiently find such an ordering.
The question whether Cunningham’s pivoting rule solves MDPs (and LPs) in polynomial time should
therefore be phrased independently of the heuristic of finding the ordering. In other words, we as “lower
bound designers” are the ones that choose a particular ordering selection rule.

Oliver Friedmann 5

4 Lower bound for ROUND-ROBIN

We start with a high-level description of the MDPs on which ROUND-ROBIN performs a subexponential
number of iterations1. The construction may be seen as an implementation of a full binary counter. A
schematic description of the lower bound MDPs is given in Figure 1. Circles correspond to vertices of V0,
i.e., vertices controlled by player 0, while rectangles correspond to the randomization vertices of VR.

The MDP of Figure 1 emulates an 3-bit counter. It is composed of 3 essentially identical levels, each
corresponding to a single bit of the counter. The MDP includes one source u and one sink t.

All edges have an immediate reward of 0 associated with them (such 0 rewards are not shown explic-
itly in the figure) unless stated otherwise as follows: Some of the vertices are assigned integer priorities.
If a vertex v has priority Ω(v) assigned to it, then a reward of 〈v〉= (−N)Ω(v) is added to all edges ema-
nating from v, where N is a sufficiently large integer. We use N ≥ 0.5n2 +5.5n+4 (the number of nodes
in the game) and ε ≤ N−(2n+9) (the highest priority in the game will be 2n+8). Priorities, if present, are
listed next to the vertex name. Note that it is profitable for the controller, to move through vertices of
even priority and to avoid vertices of odd priority, and that vertices of higher numerical priority dominate
vertices of lower priority (the idea of using priorities is inspired, of course, by the reduction from parity
games to mean payoff games).

Each level i contains an instances of a cycle gadget that consists of a randomization vertex Bi and an
increasing number of player 0 controlled nodes bi, j. To simplify notation, we identify Bi with bi,0.

From Bi, the edge Bi→ bi,i, is chosen with probability 1−ε , while the edge Bi→ yi (called “escape
edge”) is chosen with probability ε . Thus, if σ(bi, j) = bi, j−1 for all j ≤ i, the MDP is guaranteed to
eventually move from Bi to yi (this is similar to the use of randomization by Fearnley [9]). We say that a
cycle gadget is

• closed iff σ(bi, j) = bi, j−1 for all j ≤ i,

• open iff σ(bi, j) 6= bi, j−1 for some j ≤ i, and

• completely open iff σ(bi, j) 6= bi, j−1 for all j ≤ i.

The i-th level of the MDP corresponds to the i-th bit. A set bit is represented by a closed cycle gadget.
Our proof is conceptually divided into two parts. First we investigate the improving switches that

can be performed from certain policies of the MDP. This allows us to prove the existence of a sequence
of improving switches that indeed generates the sequence of policies σ0...00,σ0...01,σ0...10, . . . ,σ1...11. A
transition from σb to σb+1 involves many intermediate improvement steps. We partition the path leading
from σb to σb+1 into four sub-paths which we refer to as phases. In the following, we first give an
informal description of the phases. The second part of our proof will be to show that the way we want to
apply the improving switches is compliant with some selection ordering.

Before starting to describe what happens in the different phases, we describe the “ideal” configuration
of a policy, which belongs to phase 1: (1) all cycles corresponding to set bits are closed, (2) all other
cycles are completely open, moving either to s or u1, depending on the setting of the first bit, (3) all nodes
wi and ui move to di iff the corresponding bit i is set and to wi+1 resp. ui+1 otherwise.

Now, we are ready to informally describe all phases:

1. At the beginning of the first phase, we only have open cycle gadgets that are competing with each
other to close. It is improving to close every open cycle, however, there is only one improving
edge per open cycle moving into the cycle in each iteration.

1See http://files.oliverfriedmann.de/add/round_robin_animation.pdf for an animated run of the policy it-
eration algorithm on the presented MDPs.

http://files.oliverfriedmann.de/add/round_robin_animation.pdf

6 A subexponential lower bound for the Least Recently Considered rule

s
8

w1
d1
9

u1

B1

y1
10

b1,1

w2
d2
11

u2

B2

y2
12

b2,1

b2,2

w3
d3
13

u3

B3

y3
14

b3,1

b3,2

b3,3

w4 u4t

1−ε

ε

1−ε

ε

1−ε

ε

Figure 1: ROUND-ROBIN MDP Construction

Oliver Friedmann 7

By selecting improving edges in a round-robin fashion, it must be the case that eventually the least
unset cycle closes, as it is composed of less nodes than cycles corresponding to higher bits.
The last switch that is performed in this phase is to move the remaining edge of the cycle associated
with the least unset bit inward, and therefore close the gadget.

2. In this phase, we need to make the recently set bit i accessible by the rest of the MDP, which will
be via the u∗-nodes. First, there will be an improving edge from ui to di. After this edge has been
applied, there will be an improving edge from ui−1 to ui, then from ui−2 to ui−1 and so on.
This phase ends when the last such edge starting from u1 has been assigned properly.
Note that it still improving in this phase to close the remaining open cycles.

3. In the third phase, we perform the major part of the resetting process. By resetting, we mean to
unset lower bits again, which corresponds to reopening the respective cycles.
Also, we want to reset all other “half-closed” (meaning not completely open) cycles of higher bits.
It is improving for all nodes belonging to such cycles to directly move to either u1 or s, depending
on the recently set bit. If it was bit 1, then s is better, otherwise u1.
This phase ends when all cycle edges that should be reset have been reset.

4. In the fourth and last phase, we update the upper selection nodes w j for all j ≤ i. First, it will be
improving to move from wi to di, and then to move from wi−1 to wi, and from wi−2 to wi−1 and so
on.
The phase ends when all upper selection nodes have been updated accordingly. The binary counter
represented by policies has been increments by one bit.

4.1 Full Construction

In this subsection, we formally describe the full construction of our MDPs. We define an underlying
graph Gn = (V0,VR,E0,ER,r, p) of an MDP as shown schematically in Figure 1 as follows:

V0 := {bi, j | 1≤ j ≤ i≤ n} ∪ {yi,di | i ∈ [n]} ∪ {ui,wi | i ∈ [n+1]} ∪ {t,s}
VR := {Bi | i ∈ [n]}

With Gn, we associate a large number N ∈N and a small number 0 < ε . We require N to be at least as
large as the number of nodes with priorities, i.e. N ≥ 0.5n2 +5.5n+4 and ε−1 to be significantly larger
than the largest occurring priority induced reward, i.e. ε ≤ N−(2n+9). Remember that node v having
priority Ω(v) means that the cost associated with every outgoing edge of v is 〈v〉= (−N)Ω(v).

Table 1 defines the edge sets, the probabilities and the priorities (if present) of Gn. For convenience,
we identify bi,0 = Bi.

As designated initial policy σ∗, we use σ∗(ui) = ui+1, σ∗(wi) = wi+1, and σ∗(bi, j) = u1.
Lemma 2. The Markov chains obtained by any policy reach the sink t almost surely (i.e. the sink t is the
single irreducible recurrent class).

It is not too hard to see that the absolute value of all nodes corresponding to policies are bounded by
ε−1. More formally we have:
Lemma 3. Let P = {s,y∗,d∗} be the set of nodes with priorities. For a subset S⊆ P, let ∑(S) = ∑v∈S 〈v〉.
For non-empty subsets S⊆ P, let vS ∈ S be the node with the largest priority in S.

1. |∑(S)|< N(2n+9) and ε · |∑(S)|< 1 for every subset S⊆ P, and

2. |vS|< |vS′ | implies |∑(S)|< |∑(S′)| for non-empty subsets S,S′ ⊆ P.

8 A subexponential lower bound for the Least Recently Considered rule

Node Successors Probability
Bi bi,i ε

Bi yi 1− ε

Node Successors Priority
s d1 8
yi wi+1 2i+8
di Bi 2i+7

Node Successors
un+1 t
ui≤n di,ui+1
wn+1 t
wi≤n di,wi+1
bi, j bi, j−1,s,u1
t t

Table 1: ROUND-ROBIN MDP Construction (with bi,0 = Bi)

4.2 Phases and Improving Switches

In this subsection, we formally describe the different phases that a policy can be in, as well as the
improving switches in each phase. The increment of the binary counter by one is realized by transitioning
through all the phases.

First, we introduce notation to succinctly describe binary counters. It will be convenient for us
to consider counter configurations with an infinite tape, where unused bits are zero. The set of n-bit
configurations is formally defined as Bn = {b ∈ {0,1}∞ | ∀i > n : bi = 0}.

We start with index one, i.e. b ∈Bn is essentially a tuple (bn, . . . ,b1), with b1 being the least and bn

being the most significant bit. By 0, we denote the configuration in which all bits are zero, and by 1n, we
denote the configuration in which the first n bits are one. We write B =

⋃
n>0 Bn to denote the set of all

counter configurations.
The integer value of a b ∈B is defined as usual, i.e. |b| := ∑i>0 bi ·2i−1 < ∞. For two b,b′ ∈B, we

induce the lexicographic linear ordering b< b′ by |b|< |b′|. It is well-known that b ∈B 7→ |b| ∈ N is a
bijection. For b ∈B let b⊕ denote the unique b′ s.t. |b′|= |b|+1.

Given a configuration b, we access the least unset bit by µ(b) = min{ j | b j = 0}. Let bµ denote
b[µ(b) 7→ 1].

We use two additional notations to denote certain sets of bit configurations. Let b and b′ be two bit
configurations. Then define:

[b;b′] := {b′′ | b≤ b′′ ≤ b′} 〈b;b′〉 := {(bn, . . . ,b j+1,b
′
j, . . . ,b

′
1) | 1≤ j ≤ n}

In other words, [b;b′] contains all bit configuration that lie between b and b′, while 〈b;b′〉 contains all bit
configurations that can be obtained by merging b and b′, with parts of b building the upper and parts of
b′ building the lower part of the merged bit configuration.
Given a bit configuration b, we denote the associated source as follows:

src(b) =

{
s if b1 = 1
d1 if b1 = 0

For any source z ∈ {s,d1}, let z̄ denote the other source, i.e. s̄ = d1 and d̄1 = s.
We first introduce notation to succinctly describe policies. Let σ be a policy. Then define bit config-

urations U(σ),W (σ),B(σ) ∈Bn as follows:

U(σ)i = 1 ⇐⇒ σ(ui) = di; W (σ)i = 1 ⇐⇒ σ(wi) = di; B(σ)i = 1 ⇐⇒ cycle i closed

Oliver Friedmann 9

We say that a strategy σ is forward-consecutive w.r.t. z ∈ {s,u1} — and write Fwd-Con(σ) = z to
indicate that σ satisfies this condition — iff

∀1≤ i≤ n ∃0≤ j ≤ i : (σ(bi,1), . . . ,σ(bi,i)) = (bi,0, . . . ,bi, j−1,z, . . . ,z︸ ︷︷ ︸
i− j

)

We say that a strategy σ is backward-consecutive w.r.t. z ∈ {s,u1}— and write Bwd-Con(σ) = z to
indicate that σ satisfies this condition — iff

∀1≤ i≤ n ∃0≤ k ≤ i ∃k ≤ j ≤ i : (σ(bi,1), . . . ,σ(bi,i)) = (z̄, . . . z̄︸ ︷︷ ︸
k

,bi,k, . . . ,bi, j−1,z, . . . ,z︸ ︷︷ ︸
i− j

)

We are now ready to formulate the conditions for policies that fulfill one of the four phases along
with the improving edges. See Table 2 for a complete description (with respect to a bit configuration b).
We say that a strategy σ is a phase p strategy with configuration b iff every node is mapped by σ to a
choice included in the respective cell of the table.

Phase B(σ) U(σ) W (σ) Fwd-Con(σ) Bwd-Con(σ)

1 b b b src(b) -
2 bµ 〈b⊕;b〉 b src(b) -
3 [b⊕;bµ] b⊕ b - src(b)
4 b⊕ b⊕ 〈b⊕;b〉 src(b⊕) -

Table 2: Policy Phases

The following lemma tells us that all occurring values in the policy iteration are small compared to
N(2n+9). Particularly, ε-times values are almost negligible. It follows immediately from Table 2 and
Lemma 3 that:

Lemma 4. Let σ be a policy belonging to one of the phases specified in Table 2. Then |VALσ (v)| <
N(2n+9) and ε · |VALσ (v)|< 1 for every node v.

Next, we specify the improving switches in each phase. In order to unify the notation, we define
some sets of edges first:

BCloseI(σ) = ({(bi, j,bi, j−1) | j = 1∨σ(bi, j−1) = bi, j−2})\σ

BOpenIb(σ) = ({(bi, j,src(b)) | bi = 0}∪
{(bi, j,bi, j−1) | bi = 0∧σ(bi, j) 6= src(b)∧ (j = 1∨σ(bi, j−1) ∈ {bi, j−2,src(b)})})\σ

UIi(σ) = ({(ui,di)}∪{(u j,u j+1) | j < i∧U(σ)i = 1∧ (j = i−1∨U(σ) j+1 = 0)})\σ

WIi(σ) = ({(wi,di)}∪{(w j,w j+1) | j < i∧W (σ)i = 1∧ (j = i−1∨W (σ) j+1 = 0)})\σ

Table 3 specifies the sets of improving switches for each phase p by unioning all columns labelled
“Yes”. We finally arrive at the following main lemma describing the improving switches.

Lemma 5. The improving switches from policies that belong to the phases in Table 2 are exactly those
specified in Table 3.

10 A subexponential lower bound for the Least Recently Considered rule

Phase BCloseI(σ) BOpenIb⊕(σ) UIµ(b)(σ) WIµ(b)(σ)

1 Yes No No No
2 Yes No Yes No
3 No Yes No Yes
4 Yes No No Yes

Table 3: Improving Switches

4.3 Lower bound Proof

Finally, we outlint the specific ordering selection on the edges of the game s.t. all four phases are fully
traversed in the right ordering. From a macroscopic point of view, we have the following ordering:

(b∗,∗,b∗,∗)︸ ︷︷ ︸
Phase 1

≺ (u∗,∗)︸ ︷︷ ︸
Phase 2

≺ (b∗,∗, [s|d1])︸ ︷︷ ︸
Phase 3

≺ (w∗,∗)︸ ︷︷ ︸
Phase 4

The detailed ordering for every phase is as follows:

Phase 1 : (bi,∗,b∗,∗)≺ (bi+1,∗,b∗,∗) and (bi, j,b∗,∗)≺ (bi, j−1,b∗,∗)

Phase 2 : (ui,di)≺ (ui,ui+1)≺ (ui−1,di−1)

Phase 3 : (bi,∗, [s|d1])≺ (bi−1,∗, [s|d1]) and (bi, j,d1)≺ (bi, j,s)≺ (bi, j+1,d1)

Phase 4 : (wi,di)≺ (wi,wi+1)≺ (wi−1,di−1)

We are now ready to formulate our main lemma describing the transitioning from an initial phase 1
policy corresponding to b to a successor initial phase 1 policy corresponding to b′, complying with the
given ordering selection.

Lemma 6. Let σ be a phase 1 policy with configuration b< 1n. Let e be an edge with e� (b1,1,B1) or
(un,dn)� e. Then, there is a phase 1 policy σ ′ with configuration b⊕ and an edge e′ with e′ � (b1,1,B1)
or (un,dn)� e′ s.t. (σ ,e);≺ (σ ′,e′).

It follows immediately that the MDPs provided here indeed simulate a binary counter by starting
with the designated initial policy and the ≺-minimal edge.

Theorem 7. The number of improving steps performed by ROUND-ROBIN on the MDPs constructed in
this section, which contain O(n2) vertices and edges, is Ω(2n).

The primal linear programs corresponding to the MDPs constructed in this section are thus linear
programs on which the simplex algorithm with Cunningham’s pivoting rule performs a subexponential
number of iterations.

5 Concluding remarks and open problems

We have shown that Cunningham’s ROUND-ROBIN rule [5] may lead to a subexponential number of
iterations by constructing explicit linear programs with n variables on which the expected number of
iterations performed by ROUND-ROBIN is 2Ω(

√
n).

The lower bound for linear programming has been obtained by constructing explicit parity games and
subsequently MDPs on which we have the same expected number of iterations when solved by policy

Oliver Friedmann 11

iteration. The lower bound result immediately transfers to mean payoff games, discounted payoff games
and turned-based simple stochastic games [11].

Although now Zadeh’s well-known LEAST-ENTERED rule [27] and Cunningham’s ROUND-ROBIN

rule are known to have subexponential lower bounds in concrete settings [14], there are still some history-
based pivoting rules left for which no such bounds are known. First, there is the least-recently basic rule
[5] which selects the improving variable that left the basis least-recently. Second, there is the least-
recently entered rule [8] which selects the improving variable that entered the basis least-recently thus
far. Third, there is the least iterations in the basis rule [2] which selects the improving variable that has
been in the basis for the least number of iterations.

The most interesting open problems are, perhaps, whether linear programs can be solved in strongly
polynomial time, whether the weak Hirsch conjecture holds, and whether there is a polynomial time
algorithm for solving parity games or related game classes.

References

[1] D. Avis and V. Chvátal. Notes on Bland’s pivoting rule. In Polyhedral Combinatorics, volume 8 of Mathe-
matical Programming Studies, pages 24–34. Springer, 1978.

[2] D. Avis, S. Moriyama, and Y. Matsumoto. History based pivot rules and unique sink orientations. In Japan-
Canada Workshop, 2009.

[3] D.P. Bertsekas. Dynamic programming and optimal control. Athena Scientific, second edition, 2001.

[4] A.Z. Broder, M.E. Dyer, A.M. Frieze, P. Raghavan, and E. Upfal. The worst-case running time of the random
simplex algorithm is exponential in the height. Information Processing Letters, 56(2):79–81, 1995.

[5] W. H. Cunningham. Theoretical properties of the network simplex method. In Mathematics of Operations
Research, pages 196–208, 1979.

[6] G.B. Dantzig. Linear programming and extensions. Princeton University Press, 1963.

[7] C. Derman. Finite state Markov decision processes. Academic Press, 1972.

[8] Y. Fathi and C. Tovey. Affirmative action algorithms. Mathematical Programming, 34:292–301, 1986.

[9] J. Fearnley. Exponential lower bounds for policy iteration. In Proc. of 37th ICALP, pages 551–562, 2010.

[10] O. Friedmann. An exponential lower bound for the parity game strategy improvement algorithm as we know
it. In Proc. of 24th LICS, pages 145–156, 2009.

[11] O. Friedmann. An exponential lower bound for the latest deterministic strategy iteration algorithms. Logical
Methods in Computer Science, 7(3), 2011.

[12] O. Friedmann, T.D. Hansen, and U. Zwick. A subexponential lower bound for the random facet algorithm
for parity games. In Proc. of 22nd SODA, 2011.

[13] O. Friedmann, T.D. Hansen, and U. Zwick. Subexponential lower bounds for randomized pivoting rules for
the simplex algorithm. In Proceedings of the 43rd annual ACM symposium on Theory of computing, STOC
’11, pages 283–292, New York, NY, USA, 2011. ACM.

[14] Oliver Friedmann. A subexponential lower bound for zadeh’s pivoting rule for solving linear programs and
games. In IPCO, pages 192–206, 2011.

[15] B. Gärtner, M. Henk, and G. Ziegler. Randomized simplex algorithms on Klee-Minty cubes. Combinatorica,
18(3):349–372, 1998.

[16] B. Gärtner, F. Tschirschnitz, E. Welzl, J. Solymosi, and P. Valtr. One line and n points. Random Structures
& Algorithms, 23(4):453–471, 2003.

[17] D. Goldfarb and W.Y. Sit. Worst case behavior of the steepest edge simplex method. Discrete Applied
Mathematics, 1(4):277 – 285, 1979.

12 A subexponential lower bound for the Least Recently Considered rule

[18] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games. A Guide to Current
Research, volume 2500 of LNCS. Springer, 2002.

[19] R.A. Howard. Dynamic programming and Markov processes. MIT Press, 1960.
[20] R. G. Jeroslow. The simplex algorithm with the pivot rule of maximizing criterion improvement. Discrete

Mathematics, 4(4):367–377, 1973.
[21] G. Kalai. A subexponential randomized simplex algorithm (extended abstract). In Proc. of 24th STOC, pages

475–482, 1992.
[22] G. Kalai. Linear programming, the simplex algorithm and simple polytopes. Mathematical Programming,

79:217–233, 1997.
[23] V. Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha, editor, Inequalities III, pages

159–175. Academic Press, New York, 1972.
[24] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming. Algorithmica,

16(4-5):498–516, 1996.
[25] M.L. Puterman. Markov decision processes. Wiley, 1994.
[26] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving parity games (Extended

abstract). In International Conference on Computer-Aided Verification, CAV 2000, volume 1855 of LNCS,
pages 202–215, 2000.

[27] N. Zadeh. What is the worst case behavior of the simplex algorithm? Technical Report 27, Department of
Operations Research, Stanford, 1980.

Oliver Friedmann 13

A Proofs

Theorem 1.

Proof. Let G be an MDP and σ∗ be the optimal policy. We define a distance function d that maps every
policy to a natural number, counting in how many edges it differs from σ∗. Formally:

d(σ) = |{v | σ(v) 6= σ
∗(v)}|

To show the claim of the theorem, it suffices to prove that we can improve any non-optimal strategy
σ by an improving edge e in one step s.t. d(σ)> d(σ [e]). Let therefore σ be a strategy with d(σ)> 0.
Consider now the MDP G′ restricted to σ and σ∗, i.e. E ′0 = {(v,w) ∈ E0 | σ(v) = w or σ∗(v) = w}.

It is easy to see that G′ is a well-defined MDP, both σ and σ∗ are policies in G′ and that σ∗ is still the
optimal policy in G′. Since σ is not optimal in G′, there must be an improving edge e ∈ E ′0 \σ . Hence,
d(σ)> d(σ [e]).

We will specify a simple auxiliary lemma that describes the exact behavior of the cycles appearing
in the construction.

The idea behind the cycles is to have a gate that controls the access of other nodes of the graph to the
escape node of the cycle (yi) to which the randomized node moves with very low probability.

Lemma 8. Let σ be a policy belonging to one of the phases specified in Table 2. Let 1 ≤ i ≤ n. Let
j = max{k ≤ i | σ(bi,k) 6= bi,k−1}. The following holds:

1. cycle i closed⇒ VALσ (Bi) = VALσ (yi);

2. cycle i open⇒ VALσ (Bi) = (1− ε) ·VALσ (σ(bi, j))+ ε ·VALσ (yi).

Finally, we prove that the improving switches are indeed exactly as specified. The simple but tedious
proof uses Lemma 4 and Lemma 8 to compute the values of all important nodes in the game to determine
whether a successor of V0-controlled node is improving or not.
Lemma 5.

Proof. Let σ be a policy belonging to one of the phases with configuration b. We assume that σ is a
phase 1 policy. The improving switches for the other phases can be shown the same way.

For 1 ≤ i and l ≤ n, let Sl
i = ∑l≥ j≥i,b j=1 (〈d j〉+〈y j〉) and Si = Sn

i . Let z = src(σ). First, we apply
Lemma 3 and Lemma 8, and compute the values of all nodes.

Node t wi, ui yi z
b1=1 b1=0

Value 0 Si 〈yi〉+Si+1 〈s〉+S1 S1

Node s Bi

b1=0 b1=1 bi=0 bi=1
Value 〈s〉+〈d1〉+ε〈y1〉+S1 〈s〉+S1 ε(〈yi〉+Si+1)+(1− ε)VALσ (z) 〈yi〉+Si+1

Node di bi, j

bi=0 bi=1 bi=0,σ(bi, j) = z bi=0,σ(bi, j) = bi, j−1 bi=1
Value 〈di〉+ε(〈yi〉+Si+1)+(1− ε)VALσ (z) Si VALσ (z) VALσ (Bi) 〈yi〉+Si+1

By computing the differences of the values, the claim follows immediately.

14 A subexponential lower bound for the Least Recently Considered rule

Lemma 6.

Proof. The proof of the lemma is ultimately based on the four phases described in Table 2, the corre-
sponding improving switches given in Table 3 (proven correct in Lemma 5) and the introduced selection
ordering.

We prove the lemma by outlining the complete sequence of switches that are applied to σ in order to
obtain σ ′ (we do not explicitly describe the intermediate strategies which can be derived by applying all
mentioned switches upto that point).

Let i1, . . . , ik be the complete sequence of ascending indices s.t. bi j = 0 for 1≤ j≤ k. Let z= src(b⊕).
The following holds:

P1
; (bi1,1,bi1,0); (bi2,1,bi2,0); . . .; (bik,1,bik,0)

; (bi1,2,bi1,1); (bi2,2,bi2,1); . . .; (bik,2,bik,1)

...

; (bi1,i1 ,bi1,i1−1)
P2
; (bi2,i1 ,bi2,i1−1); . . .; (bik,i1 ,bik,i1−1)

; (ui1 ,di1); (ui1−1,ui1); . . .; (u1,u2)

P3
; (bik,1,z); (bik,2,z); . . .; (bik,ik ,z)

; (bik−1,1,z); (bik−1,2,z); . . .; (bik−1,ik−1 ,z)
...

; (bi2,1,z); (bi2,2,z); . . .; (bi2,i2 ,z)

; (bi1−1,1,z); (bi1−1,2,z); . . .; (bi1−1,i1−1,z)

; (bi1−2,1,z); (bi1−2,2,z); . . .; (bi1−2,i1−2,z)
...

; (b1,1,z)
P4
; (wi1 ,di1); (wi1−1,wi1); . . .; (w1,w2)

P1
;

B Parity Games

In this section, we show how the lower bound graphs can be turned into a parity game to provide a lower
bound for this class of games as well.

We just give a formal specification of parity games to fix the notation. For a proper description of
parity games, related two-player game classes and policy iteration on these games, please refer to [12]
and [11].

A parity game is a tuple G = (V0,V1,E,Ω), where V0 is the set of vertices controlled by player 0,
V1 is the set of vertices controlled by player 1, E ⊆ V ×V , where V = V0 ∪V1, is the set of edges, and
Ω : V → N is a function that assigns a priority to each vertex. We assume that each vertex has at least
one outgoing edge.

Oliver Friedmann 15

We say that G is a sink parity game iff there is a node v ∈V such that Ω(v) = 1, (v,v) ∈ E, Ω(w)> 1
for every other node w ∈V , v is the only cycle in G that is won by player 1, and player 1 has a winning
policy for the whole game.

Theorem 9 ([11]). Let G be a sink parity game. Discrete policy iteration requires the same number of
iterations to solve G as the policy iteration for the induced payoff games as well as turn-based stochastic
games to solve the respective game G′ induced by applying the standard reduction from G to the respec-
tive game class, assuming that the improvement policy solely depends on the ordering of the improving
edges.

Essentially, the parity game graph corresponding to our MDPs is the same. Randomization nodes
are replaced by player 1 controlled nodes s.t. the cycles are won by player 0. We follow Fearnley’s
construction here [9]. We assign low unimportant priorities to all nodes that have currently no priority.

We define the underlying graph Gn = (V0,V1,E,Ω) of a parity game as shown schematically in Fig-
ure 2. More formally:

V0 := {bi, j | 1≤ l ≤ i≤ n} ∪ {yi,di | i ∈ [n]} ∪ {ui,wi | i ∈ [n+1]} ∪ {t,s}
V1 := {Bi | i ∈ [n]}

Table 4 defines the edge sets and the priorities of Gn (with bi,0 = Bi).

Node Successors Priority
un+1 t 3
ui≤n di,ui+1 3
wn+1 t 3
wi≤n di,wi+1 3
bi, j bi, j−1,s,u1 5

Node Successors Priority

t t 1
s d1 8

Bi bi,i,yi 6
yi wi+1 2i+8
di Bi 2i+7

Table 4: ROUND-ROBIN Parity Game Construction (with bi,0 = Bi)

The first important observation to make is that the parity game is a sink game, which helps us to trans-
fer our result to mean payoff games, discounted payoff games as well as turned-based simple stochastic
games. The following lemma corresponds to Lemma 2 in the MDP world.

Lemma 10. Starting with the designated initial policy of Section 4, we have that Gn is a sink parity
game.

All other definitions are exactly as in Section 4. Particularly, Table 2 and Table 3 become applicable
again. The following lemma has the exact same formulation as Lemma 5 in the MDP world.

Lemma 11. The improving switches from policies that belong to the phases in Table 2 are exactly those
specified in Table 3.

The reason why this lemma holds is that the valuations of the parity game nodes are essentially the
same as the values in the MDP by dropping unimportant ε×∗ terms.

All other proofs in Section 4 rely on Table 2, Table 3 and Lemma 5, hence we transfer our main
theorem to the parity game world.

Theorem 12. The worst-case expected running time of the ROUND-ROBIN algorithm for n-state parity
games, mean payoff games, discounted payoff games and turn-based simple stochastic games is subex-
ponential.

16 A subexponential lower bound for the Least Recently Considered rule

s
8

w1

3
d1
9

u1

3

B1

6

y1
10

b1,1
5

w2

3
d2
11

u2

3

B2

6

y2
12

b2,1
5

b2,2
5

w3

3
d3
13

u3

3

B3

6

y3
14

b3,1
5

b3,2
5

b3,3
5

w4

3

u4

3
t
1

Figure 2: ROUND-ROBIN Parity Game Construction

	1 Introduction
	2 Markov Decision Processes and their linear programs
	3 Policy iteration algorithms and simplex algorithms
	4 Lower bound for Round-Robin
	4.1 Full Construction
	4.2 Phases and Improving Switches
	4.3 Lower bound Proof

	5 Concluding remarks and open problems
	A Proofs
	B Parity Games

