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The modal µ-calculus extends basic modal logic with second-order quantification in terms
of arbitrarily nested fixpoint operators. Its satisfiability problem is EXPTIME-complete.
Decision procedures for the modal µ-calculus are not easy to obtain though since the arbi-
trary nesting of fixpoint constructs requires some combinatorial arguments for showing the
well-foundedness of least fixpoint unfoldings. The tableau-based decision procedures so far
also make assumptions on the unfoldings of fixpoint formulas, e.g. explicitly require formu-
las to be in guarded normal form. In this paper we present a tableau calculus for deciding
satisfiability of arbitrary, i.e. not necessarily guarded µ-calculus formulas. It is based on a
new unfolding rule for greatest fixpoint formulas which allows unguarded formulas to be
handled without an explicit transformation into guarded form, thus avoiding a (seemingly)
exponential blow-up in formula size. We prove soundness and completeness of the calculus,
and compare it empirically to using guarded transformation instead. The new unfolding rule
can also be used to handle nested star operators in PDL formulas correctly.
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1. Introduction

1.1 Deciding the Modal µ-Calculus

The modal µ-calculus Lµ as introduced by Kozen (Kozen, 1983) is a fundamental modal
fixpoint logic. It is expressively equivalent to the bisimulation-invariant fragment of
monadic second-order logic (Janin & Walukiewicz, 1996) and can therefore express all
bisimulation-invariant properties of Kripke structures that can be defined using finite
automata or any other machinery with at most regular expressive power. Consequently,
there are embeddings of temporal logics like CTL and CTL∗ into Lµ (Emerson, 1990;
Dam, 1994), as well as of dynamic logics like PDL (Kozen, 1983), even when extended
with certain extras (Emerson & Lei, 1986).

Decidability of Lµ can be established (Kozen & Parikh, 1983) by observing that its
semantics can be expressed in monadic second-order logic which is known to be decidable
due to Rabin’s famous result from 1969 (Rabin, 1969). This, however, only gives a non-
elementary upper complexity bound. The easy embedding of PDL yields a lower bound
of deterministic exponential time, also known by the time of Lµ’s invention (Fischer &
Ladner, 1979).

Closing this gap has taken some time and effort. Emerson and Streett showed de-
cidability in deterministic triple exponential time (Streett & Emerson, 1984). Their
procedure reduces the satisfiability problem to the problem of testing a finite tree au-
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tomaton for emptiness. This finite tree automaton is obtained as the product of two
automata: the first, called local automaton, accepts all locally-consistent Hintikka-tree
structures for the input formula. It guesses, simply speaking, which subformulas of the
input formula are satisfied at which part of a model and ensures that this guess is con-
sistent with the Boolean semantics of the subformula; for instance, a conjunction is only
satisfied if both conjuncts are satisfied, etc.

A second automaton, called global automaton, is needed which checks for well-
foundedness of the unfolding relation for least fixpoint constructs. This problem is char-
acteristic for satisfiability checking procedures for logics with fixpoint constructs. The
product of these two accepts exactly the Hintikka tree models of the original formula
which is sufficient for deciding satisfiability. Later, Emerson and Jutla have improved
the involved automata-theoretic constructions to obtain ExpTime-completeness of this
problem (Emerson & Jutla, 2000).

There are also tableau-based decision procedure for (fragments) of Lµ. Kozen gave
a tableau calculus in the introductory paper but could only prove soundness and com-
pleteness for the so-called aconjunctive fragment (Kozen, 1983). This has been extended
by Walukiewicz to the so-called weak aconjunctive fragment (Walukiewicz, 2000) in the
context of finding a complete axiom system for Lµ. The differences between tableau-
based satisfiability checking and a proof system for validity are, however, merely a
matter of taste in this setting. The property of being aconjunctive implies that any
least fixpoint construct can only regenerate in a foreseeable way through a sequence of
Hintikka sets which eliminates a large part of the difficulty in deciding well-foundedness
of the unfolding relation. Bradfield and Stirling wrote “it is an open question whether the
tableau technique can be made to work directly for all formulae” (Bradfield & Stirling,
2001). A tableau calculus which also works for non-aconjunctive formulas has recently
been presented by Jungteerapanich (Jungteerapanich, 2009).

Most tableau-based decision procedures still impose a restriction on the syntax of
formulas. They only work for formulas in guarded form which intuitively ensures that
every infinite sequence of Hintikka sets corresponds to an infinite sequence of states in
a Kripke model. Guardedness synchronizes all subformulas in a tableau node via the
usual rule for modalities which strips modal operators at the top of formulas and, hence,
corresponds semantically to the visiting of new states in a model. When applying rules to
unguarded formulas in an arbitrary order, it is possible to leave infinite unfoldings of least
fixpoint formulas undetected by continuously unfolding a greatest fixpoint construct.

Example. Typical tableau rules for fixpoint formulas replace a formula of the form
σX.ϕ by ϕ[σX.ϕ/X], i.e. its unfolding which is obtained by replacing every (free) oc-
currence of the recurrence variable X with the entire formula in the body of this fixpoint
definition. Now consider the set {νX.X, µY.Y } representing the conjunction of the great-
est and the least fixpoint of the identity function. These two formulas are unguarded
because X and Y do not occur under the scope of modal operators in their defining
fixpoint formulas. Moreover, logically, the greatest fixpoint of the identity function is
true and the least one is ff. Thus, this set is unsatisfiable.

A more mechanical proof that does not rely on the knowledge of equivalences between
νX.X and true etc. would have to detect unsatisfiability by seeing that µY.Y would get
unfolded infinitely often. Note that both formulas equal their unfoldings, thus a tableau
for this set is just the infinite sequence

νX.X
µY.Y

νX.X
µY.Y

νX.X
µY.Y

. . .

If tableau rules can be applied arbitrarily then it is possible to create this sequence
in various ways, for instance by unfolding νX.X and µY.Y in a turn-based fashion.
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However, it can also be created by only unfolding νX.X and never touching µY.Y .
The difference can be depicted as follows where a dashed line indicates that the target
formula has been created from the source one by unfolding; a continuous line indicates
that it has just been carried over as a non-principal formula in this rule application.

νX.X
µY.Y

νX.X
µY.Y

νX.X
µY.Y

. . .

νX.X
µY.Y

νX.X
µY.Y

νX.X
µY.Y

. . .

While these two ways create the same tableau branch, they are fundamentally different
in that the first way contains an infinite unfolding of a least fixpoint construct which
may cause unsatisfiability whereas the second one does not.

Such a phenomaenon does not occur with guarded formulas. Guardedness ensures
that no fixed point formula can be unfolded twice without unfolding all other fixpoint
formula that are present in the current tableau node. The reason simply is the rule for
modalities which acts globally on all formulas in the current tableau node whereas all
other rules only replace a single formula and leave the others untouched.

Unguarded formulas may not occur often in natural specifications formulated in the
modal µ-calculus. However, unguardedness naturally occurs when translating formu-
las of PDL into Lµ (Mateescu, 2002). The same holds for PSL, an extension of the
linear-time temporal logic LTL with the purpose of defining an expressive standard-
ised program specification language. It can be translated into the linear-time µ-calculus
(Lange, 2007), a variant of the Lµ that is interpreted over linear flows of time only
(Banieqbal & Barringer, 1989). Unguardedness is, in both cases, a result of translating
regular expressions with nested Kleene star operators into fixpoint expressions. Simi-
larly, unguarded Lµ formulas occur when translating any kind of finite-state automaton
with ε-transitions into Lµ (Dam, 1992; Kaivola, 1997; Emerson & Jutla, 1991). Last
but not least, there are also examples of explicitly given unguarded formulas that ex-
press interesting properties. For instance, Berwanger showed that two variables suffice
to express the winning region in parity games (Berwanger, 2003). This heavily relies on
unguarded occurrences of variables. A fully guarded variant is know as the Walukiewicz
formula (Walukiewicz, 1996), and that needs as many variables as there are different
priorities in the parity game. Thus, Berwanger’s formula expresses winning regions in
arbitrary games, Walukiewicz’s formulas only express them in games of a fixed number
of priorities. Unguardedness seems to be necessary for this boost in generality.

A näıve solution is to impose a fairness constraint on the application of unfolding
rules. This is equivalent to storing subformulas in a tableau node as a list rather than
a set which increases the complexity slightly, namely there would be O(n!) rather than
O(2n) many different tableau nodes.

1.2 Using Guarded Transformation

It is known that every formula can be transformed into an equivalent guarded one. Such
constructions are presented in several places in the literature, either without an explicit
analysis of the incurring blow-up which is easily seen to be exponential (Banieqbal
& Barringer, 1989; Walukiewicz, 2000), or stating that the blow-up is polynomial, for
instance quadratic (Mateescu, 2002) or even just linear (Kupferman, Vardi, & Wolper,
2000). While the transformations in the latter two are correct, their analyzes are both
flawed as recently observed (Bruse, Friedmann, & Lange, 2013) and the translations are
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in fact exponential.
Many decision procedures for the modal µ-calculus explicitly require formulas to be

in guarded form (Kozen, 1983; Walukiewicz, 2000; Jungteerapanich, 2009). Thus, the
acclaimed results regarding the complexity of deciding the modal µ-calculus with these
procedures need to be restricted to the guarded fragment, or one has to factor in an ex-
ponential blow-up when using guarded transformation. For instance, Jungteerapanich’s
tableaux thus only yield a nondterministic doubly exponential time decision procedure
for the entire µ-calculus.

1.3 Deciding Unguarded Formulas

In this paper we present a tableau-based decision procedure for the full modal µ-calculus
in unrestricted form. The requirement for guardedness is eliminated using a special un-
folding rule for greatest fixpoint formulas. Intuitively, unfolding of greatest fixpoint
constructs leads to two subgoals: one containing this unfolding, the other one not con-
taining it. We prove soundness and completeness of this calculus and show how to obtain
a decision procedure from it. This uses some automata-theoretic machinery similar to
the use of the global automata in the approaches of Emerson et al.

The paper provides the following benefits: it presents a novel approach of dealing with
unguarded fixpoint formulas inside a tableau calculus. This may be applicable to other
logics with similar syntactic facets (like nested Kleene stars in PDL for instance). With
the required pre-transformation into guarded form, Jungteerapanich’s tableaux only
lead to a nondeterministic double exponential time algorithm. The decision procedure
derived from the tableaux presented here runs in deterministic single exponential time.
This even marginally beats the worst-case runtime of the automata-theoretic procedure.
Finally, the tableaux presented here are used in what seems to be the first attempt at
implementing a decision procedure for Lµ, realized in the tool MLSolver (Friedmann
& Lange, 2010).

The paper is organised as follows. Sect. 2 recalls the modal µ-calculus and neces-
sary technicalities. Sect. 3 presents the tableaux calculus and proves them to be sound
and complete with respect to satisfiability. Sect. 5 shows how to obtain a complexity-
theoretically optimal decision procedure for the modal µ-calculus from these tableaux.
Sect. 6 presents some experimental results showing that transformation into guarded
form is worth being avoided.

2. The Modal µ-Calculus

Transition Systems. A labeled transition system (LTS) over a set of action names Σ
and a set of atomic propositions P is a tuple T = (S,−→, `) where S is a set of states,
−→ ⊆ S × Σ× S defines a set of transitions between states that are labeled with action
names, and ` : S → 2P labels each state with a set of atomic propositions that are true
in this state.

Syntax. Let Σ and P be as above and V be a set of variables. Formulas of the modal
µ-calculus Lµ in positive normal form are given as follows.

ϕ ::= q | q | X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µX.ϕ | νX.ϕ

where X ∈ V, q ∈ P, and a ∈ Σ.
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The operators µ and ν act as binders for the variables in a formula. A free occurrence
of a variable X is therefore one that does not occur under the scope of such a binder.
We assume all formulas ϕ to be well-named in the sense that each variable is bound at
most once. We will write σ for either µ or ν.

We write ϕ[ψ/X] to denote the formula that results from ϕ by replacing every free
occurrence of the variable X in it with the formula ψ.

2.0.0.1 Fischer-Ladner Closure.. The Fischer-Ladner closure of a formula ϕ is the
least set Cl(ϕ) that contains ϕ and satisfies the following.

• If ψ1 ∧ ψ2 ∈ Cl(ϕ) or ψ1 ∨ ψ2 ∈ Cl(ϕ) then ψ1, ψ2 ∈ Cl(ϕ).
• If 〈a〉ψ ∈ Cl(ϕ) or [a]ψ ∈ Cl(ϕ) then ψ ∈ Cl(ϕ).
• If σX.ψ ∈ Cl(ϕ) then ψ[σX.ψ/X] ∈ Cl(ϕ).

It is a standard exercise to show that |Cl(ϕ)| is linear in the syntactic length of ϕ. We
therefore define |ϕ| := |Cl(ϕ)|.

Fixpoint Nestings. Let ϕ be fixed and take two fixpoint formulas σX.ψ, σ′Y.ψ′ ∈ Cl(ϕ).
The latter depends on the former if this X occurs freely inside of ψ′. Let �ϕ be the
reflexive-transitive closure of this dependency order. The alternation depth of ϕ, ad(ϕ),
is the maximal length of a �ϕ-chain s.t. adjacent formulas in this chain are of different
fixpoint type µ or ν.

Semantics. Formulas of Lµ are interpreted in states s of an LTS T = (S,−→, `) which

we assume fixed for the moment. Let ρ : V → 2S be an environment used to interpret
free variables. We write ρ[X 7→ T ] to denote the environment which maps X to T and
behaves like ρ on all other arguments. The semantics is given as a function mapping a
formula to the set of states that it is true in w.r.t. the environment.

[[q]]ρ = {s ∈ S | q ∈ `(s)}
[[q]]ρ = {s ∈ S | q 6∈ `(s)}
[[X]]ρ = ρ(X)

[[ϕ ∨ ψ]]ρ = [[ϕ]]ρ ∪ [[ψ]]ρ
[[ϕ ∧ ψ]]ρ = [[ϕ]]ρ ∩ [[ψ]]ρ
[[〈a〉ϕ]]ρ = {s ∈ S | ∃t ∈ [[ϕ]]ρ with s a−→ t}
[[[a]ϕ]]ρ = {s ∈ S | ∀t ∈ S : if s a−→ t then t ∈ [[ϕ]]ρ}
[[µX.ϕ]]ρ =

⋂
{T ⊆ S | [[ϕ]]ρ[X 7→T ] ⊆ T}

[[νX.ϕ]]ρ =
⋃
{T ⊆ S | T ⊆ [[ϕ]]ρ[X 7→T ]}

Two formulas ϕ and ψ are equivalent, written ϕ ≡ ψ, iff for all LTS and all environments
ρ we have [[ϕ]]ρ = [[ψ]]ρ. We may also write s |=ρ ϕ instead of s ∈ [[ϕ]]ρ.

Guarded Form. A formula ϕ is guarded w.r.t. a variable X iff every occurrence of X
that is bound by some σX.ψ is in the scope of a modal operator 〈a〉 or [a] within ψ. A
formula ϕ is guarded iff ϕ is guarded w.r.t. every bound variable.

Proposition 1 ((Banieqbal & Barringer, 1989; Walukiewicz, 2000; Kupferman et al.,

2000; Mateescu, 2002)). For every ϕ ∈ Lµ there is a guarded ϕ′ s.t. ϕ′ ≡ ϕ, |ϕ′| = 2O(|ϕ|),
and ad(ϕ′) = ad(ϕ).
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(Or)
ϕ0 ∨ ϕ1,Φ
ϕi,Φ

(And)
ϕ0 ∧ ϕ1,Φ
ϕ0, ϕ1,Φ

(FPµ)
µX.ϕ,Φ

ϕ[µX.ϕ/X],Φ

(FPUν )
νX.ϕ,Φ

Φ ϕ[νX.ϕ/X],Φ
(FPGν )

νX.ϕ,Φ
ϕ[νX.ϕ/X],Φ

X guarded in ϕ

(Mod)
〈a1〉ϕ1, . . . , 〈an〉ϕn, [b1]ψ1, . . . , [bm]ψm, q1, . . . , qk, p1, . . . , ph

ϕ1, {ψi | a1 = bi} ϕ2, {ψi | a2 = bi} . . . ϕn, {ψi | am = bi}
∀i, j.qi 6= pj

Figure 1. The tableaux rules for Lµ satisfiability.

We remark that guarded transformation can increase the number of µ-bound vari-
ables in a formula, even exponentially. This measure is used at the end of Sect. 5 in a
comparison of different decision procedures.

3. Tableaux for the Modal µ-Calculus

We fix a formula ϑ and present a calculus of infinite tableaux for this particular ϑ. A
pre-tableau for ϑ is a possibly infinite but finitely-branching tree in which nodes are
labeled with subsets of Sub(ϑ), the set of subformulas of ϑ. The root is labeled with the
singleton set containing ϑ, and successors in the tree are being built using the rules in
Fig. 1.

The rules for the boolean connectives are straight-forward, and the modal rule (Mod)
is also the usual one. Least fixpoint variables are handled using simple unfolding with
rule (FPµ). The handling of greatest fixpoints is different, though. Rule (FPUν ) creates
two subgoals, one containing the usual unfolding of the fixpoint formula, the other one
consisting of the current side formulas only. This rule can be applied to unfold any
greatest fixpoint formula. On the other hand, rule (FPGν ) is the usual unfolding rule
which can only be applied to formulas in which the bound variable is guarded.

Remember the description of what can happen when two fixpoint formulas, in par-
ticular a least and a greatest one, occur in a formula set which is to be tested for
satisfiability, as explained at the end of Section 1.1. If both fixpoint formulas are being
unfolded in the style of rules (FPµ) and (FPGν ), and they contain unguarded occurrences
of their fixpoint variables then it is possible to continuously unfold one of them and miss
the other. Now there are various cases to consider based on the intuition that an infinite
unfolding of a least fixpoint formula is bad (in the sense of an unsatisfied formula in
this set) whereas an infinite unfolding of a greatest fixpoint formula is fine (because it
signals satisfaction of this formula in the set).

• If both the greatest and the least fixpoint formula are being unfolded infinitely
often then the infinite unfolding of the least one witnesses unsatisfiability.
• If the least one is unfolded infinitely often and the greatest one is not because an

unguarded occurrence of the least fixpoint variable makes the greatest one “miss
its turn” then unsatisfiability is still witnessed by the infinite unfolding of the
least fixpoint formula. Thus, unguarded occurrences of variables bound by a least
fixpoint quantifier are harmless.
• If the greatest one gets unfolded infinitely often and the least one does not because
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it is being missed out due to an unguarded occurrence of the greatest fixpoint
variable then this is problematic because the infinite unfolding of the least fixpoint
formula that witnesses unsatisfiability is not visible in that case. Hence, unguarded
occurrences of greatest fixpoint variables are problematic, and this is where rule
(FPGν ) comes into play. Apart from the usual subgoal in which the greatest fixpoint
variable has been unfolded, it creates a second subgoal in which this formula is
missing. Note that if νX.ϕ ∧ Φ is satisfiable then so is Φ. Thus, the additional
subgoal Φ does not prevent the tableau to be successful for satisfiable formulas.
It simply checks for infinite unfoldings of least fixpoint formulas which could be
missed out in the presence of infinite unfoldings of greatest fixpoint formulas via
unguarded occurrences of their variables.

Next we will formalise the intuitive notion of infinite unfolding in a tableau branch.
A formula ϑ induces the connection relation  ⊆ 2Sub(ϑ) × Sub(ϑ) × 2Sub(ϑ) × Sub(ϑ)
defined as follows. We have Φ, ϕ Ψ, ψ iff there is an instance of a rule of Fig. 1 s.t.

• ϕ ∈ Φ, ψ ∈ Ψ, and
• Φ is the conclusion (on top), Ψ is one of the premisses (below), and
• either ϕ is not principal in this rule application and ψ = ϕ, or ϕ is a principal

formula in Φ and ψ is a replacement of ϕ.

For example, in rule (And), ϕ0 ∧ ϕ1 is connected to both ϕ0 and ϕ1. In rule (Mod),
�ψj is connected to ψj in any premiss, literals are not connected to anything, and ♦ϕi
is only connected to ϕi in the i-th premiss; etc.

A thread in an infinite pre-tableaux branch Φ0,Φ1,Φ2, . . . is an infinite sequence
ϕ0, ϕ1, ϕ2, . . . s.t. Φi, ϕi  Φi+1, ϕi+1 for every i ∈ N. It is called active if the thread’s
formulas are principal infinitely often.

Note that only the unfolding rules (FPµ) and (FPUν ) do not decrease the size of a
principal formula. Hence, each active thread must contain infinitely many formulas of
the form σX.ψ. A thread is called µ-thread if the greatest (w.r.t. �ϑ) formula occurring
in it is of the form µX.ϕ. If it is of the form νX.ϕ then the thread is a ν-thread. The
variable X is called thread variable. The following is not hard to see.

Lemma 2. Every infinite branch in pre-tableau contains at least one active thread and
every active thread is either of type µ or ν.

A tableau for ϑ is a pre-tableau s.t. every finite branch ends in a node labeled with
�-formulas and consistent literals only, and every infinite branch does not have an active
µ-thread.

Example. Consider ϕ = νX. (〈a〉X ∨ µY.(X ∨ 〈b〉Y )) ∧ νR.µS. (([a]S) ∨ ([b]R)) which
states that every path consists of a- and b-labelings, every path has infinitely many
b’s, and that there exists a path with infinitely many a’s. This formula is obviously
satisfiable.

See Fig. 2 for a tableau witnessing the satisfiability of ϕ. We write ϕF as an abbrevi-
ation for the fixpoint bodies, i.e. ϕS = ([a]S)∨ ([b]R), etc.; the tableau has only infinite
branches, and every thread is a ν-thread. All threads are marked by the arrow notation.

We conclude this section with a remark on the handling of greatest fixpoint formulas.
Many formulas used in applications are naturally guarded. Since the tableau calculus
is sound and complete for the entire Lµ, it can be used for guarded formulas as well.

However, handling guarded greatest fixpoint operators with rule (FPUν ) may introduce
unnecessary subgoals. Rule (FPG

ν ) can therefore be regarded as an optimization. How-
ever, it is not a priori clear whether it is advisable to use this optimization. It clearly
reduces the number of immediate subgoals in a tableau but these subgoals may be
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νX. (〈a〉X ∨ µY.(X ∨ 〈b〉Y )) ∧ νR.µS. (([a]S) ∨ ([b]R))
(And)

νX. (〈a〉X ∨ µY.(X ∨ 〈b〉Y )) , νR.µS. (([a]S) ∨ ([b]R))
(FP

G
ν )

νX. (〈a〉X ∨ µY.(X ∨ 〈b〉Y )) , µS. (([a]S) ∨ ([b]ϕR))
(FPµ)

νX. (〈a〉X ∨ µY.(X ∨ 〈b〉Y )) , ([a]ϕS) ∨ ([b]ϕR)
(Or)

νX. (〈a〉X ∨ µY.(X ∨ 〈b〉Y )) , [a]ϕS
(FP

U
ν )

〈a〉ϕX ∨ µY.(ϕX ∨ 〈b〉Y ), [a]ϕS
(Or)

〈a〉ϕX , [a]ϕS
(Mod)

νX. (〈a〉X ∨ µY.(X ∨ 〈b〉Y )) , µS. (([a]S) ∨ ([b]ϕR))
(FPµ)

νX. (〈a〉X ∨ µY.(X ∨ 〈b〉Y )) , ([a]ϕS) ∨ ([b]ϕR)
(Or)

νX. (〈a〉X ∨ µY.(X ∨ 〈b〉Y )) , [b]ϕR
(FP

U
ν )

〈a〉ϕX ∨ µY.(ϕX ∨ 〈b〉Y ), [b]ϕR
(Or)

µY.(ϕX ∨ 〈b〉Y ), [b]ϕR
(FPµ)

ϕX ∨ 〈b〉ϕY , [b]ϕR
(Or)

〈b〉ϕY , [b]ϕR
(Mod)

µY.(ϕX ∨ 〈b〉Y ), νR.µS. (([a]S) ∨ ([b]R))
(FPµ)

ϕX ∨ 〈b〉ϕY , νR.µS. (([a]S) ∨ ([b]R))
(Or)

νX. (〈a〉X ∨ µY.(X ∨ 〈b〉Y )) , νR.µS. (([a]S) ∨ ([b]R))

[b]ϕR

.

.

.

[a]ϕS
(Mod)

µS. (([a]S) ∨ ([b]ϕR))
(FPµ)

([a]ϕS) ∨ ([b]ϕR)
(Or)

[b]ϕR
(Mod)

νR.µS. (([a]S) ∨ ([b]R))
(FP

G
ν )

µS. (([a]S) ∨ ([b]ϕR))

Figure 2. A tableau for νX. (〈a〉X ∨ µY.(X ∨ 〈b〉Y )) ∧ νR.µS. (([a]S) ∨ ([b]R))

present somewhere else anyway in which case it only reduces the number of connections
between subgoals. Neither decreases the asymptotic complexity of the calculus.

4. Correctness

The aim of this section is to prove that the tableau calculus presented above is sound
and complete for all µ-calculus formulas, not just guarded ones. Like other correctness
proofs for µ-calculus machinery, it needs some technicalities and some combinatorics.

4.1 Approximants and Signatures

We need fixpoint approximants in order to prove absence of any µ-threads in tableaux.
Here we introduce them via annotations of fixpoint formulas with ordinal numbers.
These annotated fixpoint formulas are interpreted in a way that is different to ordinary
fixpoint formulas. Let T = (S,−→, `) be the underlying transition system.

[[µ0X.ψ]]ρ := ∅ [[ν0X.ψ]]ρ := S

[[µα+1X.ψ]]ρ := [[ψ]]ρ[X 7→[[µαX.ψ]]
ρ
] [[να+1X.ψ]]ρ := [[ψ]]ρ[X 7→[[ναX.ψ]]

ρ
]

[[µλX.ψ]]ρ :=
⋃
α<λ

[[µαX.ψ]]ρ [[νλX.ψ]]ρ :=
⋂
α<λ

[[ναX.ψ]]ρ

where α is an arbitrary ordinal and λ is a limit ordinal.
A signature is an annotation of a formulas fixpoint subformulas with ordinal numbers.

We distinguish two types of signatures: a µ-signature annotates least fixpoint subfor-
mulas, a ν-signature annotates greatest fixpoint subformulas. We write ϕζ to denote
the annotation of fixpoint formulas of corresponding type in ϕ with the values in ζ.
Remember that fixpoint subformulas of a formula ϑ are partially ordered by �. This
extends to a lexicographic and well-founded order of µ- or ν-signatures on ϑ which we
will also call �.

The following lemma summarizes well-known facts about signatures that will be used
in the proofs later on.

Lemma 3. Let s be a state in a transition system T , ϕ ∈ Lµ.

(1) s ∈ [[ϕ]]ρ iff there is a µ-signature ζ s.t. s ∈ [[ϕζ ]]ρ.
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(2) s 6∈ [[ϕ]]ρ iff there is a ν-signature ζ s.t. s 6∈ [[ϕζ ]]ρ.

(3) Let ϕ′ result from ϕ by replacing some µX.ψ in it with its unfolding ψ[µX.ψ/X].
Suppose there is a µ-signature ζ s.t. s ∈ [[ϕζ ]]ρ. Then there is a µ-signature ζ ′ with

ζ �/ ζ ′ and s ∈ [[ϕ′ζ
′
]]ρ.

(4) Let ϕ′ result from ϕ by replacing some νX.ψ in it with its unfolding ψ[νX.ψ/X].
Suppose there is a ν-signature ζ s.t. s 6∈ [[ϕζ ]]ρ. Then there is a ν-signature ζ ′ with

ζ �/ ζ ′ and s 6∈ [[ϕ′ζ
′
]]ρ.

4.2 Soundness

We represent (pre-)tableaux as pointed directed acyclic graphs (V, v0,≺,M) with V
being the set of nodes, v0 being the initial node, ≺ being the transition relation andM
being a labeling function that maps each node v ∈ V to the corresponding sequent.

Let P = (V, v0,≺,M) be a tableau for ϑ. A ν-strategy for P is a partial map % : V → V
that is defined on every node v that is the conclusion of the application of the (FPUν )-rule
and fulfills for every such v that v ≺ %(v).

A branch v0, v1, . . . in P conforms with % iff for every i with vi being the conclusion of
the application of the (FPUν )-rule it holds that %(vi) = vi+1. We say that a node v ∈ V
is %-reachable iff v belongs to a %-conforming branch. The set of %-reachable nodes is
denoted by V%. The pair (P, %) is called collapsible if every %-conforming branch in P is
either finite or comprises infinitely many applications of the (Mod)-rule.

Let (P, %) be collapsible. We define a lift operation l(P,%) : V% → V% that maps every
node v ∈ V% to v if v is a sink or the conclusion of the application of the (Mod)-rule and
otherwise to l(P,%)(w) where w is the uniquely defined %-conforming successor of v. As
(P, %) is collapsible, l(P,%) is indeed well-defined.

Every collapsible (P, %) for a formula ϑ induces an generic interpretation T(P,%) =

(V%,−→, `) with ` : v 7→ M(v) ∩ P and v a−→w for two nodes v, w ∈ V% iff there is an
u ∈ V with v ≺ u connected via an a-label and l(P,%)(u) = w.

Next, we define an annotation that counts for every formula ϕ in a sequent, how often
every ν-bound variable has been unfolded since the last occurrence of the modal rule.
This will help us to define a generic ν-strategy that results in collapsible tableaux while
ensuring that every potentially relevant unguarded ν-bound variable that occurs in a
thread is unfolded at least once.

Let P = (V, v0,≺,M) be a tableau for ϑ. The ν-variable annotation for P is a function
AP that maps every node v ∈ V and every formula ϕ ∈ M(v) to a set of sets of ν-
variables AP(v, ϕ).

We define the function inductively. For the initial v0, AP(v0, ϑ) = {∅}. Let now
v, u ∈ V with v ≺ u and AP(v, ∗) be already defined. Then

• AP(u, ϕ) = {∅} if M(v) is the conclusion of a (Mod)-application,
• AP(u, ϕ) = {U ∪ {X} | (U \ {X}) ∈ A′P(u, ϕ)} if ϕ = ψ[νX.ψ/X] and νX.ψ is

principal in M(v), and
• AP(u, ϕ) = A′P(u, ϕ) otherwise,

where A′P(u, ϕ) :=
⋃
{AP(v, ψ) | (M(v), ψ) (M(u), ϕ)}.

Next, we define a canonic ν-strategy %P for a tableau P as follows. Let v be a node in P
s.t. M(v) is the conclusion of an application of the (FPUν )-rule with νX.ψ as principal
formula and let u be the successor of v discarding the fixpoint body and w be the
successor following the fixpoint body. Then %P(v) = w if there is an U ∈ AP(v, νX.ψ)
with X 6∈ U and %P(v) = u otherwise.

Lemma 4. Let P be a tableau for ϕ. Then (P, %P) is collapsible.

9
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Proof. Assume that (P, %P) is not collapsible, hence there is an infinite %P -conforming
branch v0, v1, . . . in P that contains only finitely many applications of the (Mod)-rule.
Let i∗ ≥ 0 s.t. M(vi) is not the conclusion of the application of a (Mod)-rule for all
i ≥ i∗.

First observe the following fact. Let i ≥ i∗ and ϕ ∈ M(vi). Let U ∈ AP(vi, ϕ). This
implies that there is a (prefix of a) thread s going through ϕ in the node vi s.t. between
i∗ and i, we have

• zero unfoldings for fixpoints νX.ψ with X 6∈ U , and
• one unfolding for fixpoints νX.ψ with X ∈ U .

Let now t = ϕ0, ϕ1, . . . be an active thread with thread variable X, existing due to
Lemma 2. Due to the fact that P is a tableau, X must be of type ν.

Let j0, j1, . . . be an infinite sequence of ascending numbers with j0 ≥ i∗ s.t. ϕjk = νX.ψ
is the principal formula in M(vjk) for all k.

For every jk, there is an U ∈ AP(vjk , νX.ψ) s.t. X 6∈ U by the canonic ν-strategy. In
other words, for every k there is a (prefix of a) thread sk going through νX.ψ in the
node vjk s.t. between i∗ and jk, we have no more than one unfolding per ν-fixpoint.

Now note that by the pigeonhole principle (infinitely many sk share the same prefixes
and they need to split infinitely often), there are infinitely many sk which are principal
between i∗ and jk. By König’s Lemma, this implies that there is an active thread s that
has no more than one unfolding per ν-fixpoint.

Since s is clearly not a ν-fixpoint, it follows by Lemma 2 that s is a µ-fixpoint. But
this is impossible with P being a tableau.

Due to the fact that (P, %P) is always collapsible, we can define the canonic interpre-
tation TP as T(P,%P).

Theorem 5. A formula ϑ is satisfiable if there is a tableau P for ϑ. Particularly,
T(P,%P) |= ϑ.

Proof. By contradiction assume that T(P,%P) 6|= ϑ. We extract a branch v0, v1, . . . in P, a
sequence of formulas ϕ0, ϕ1, . . . with ϕi ∈M(vi) for all i and a sequence of ν-signatures
ζ0 � ζ1 � . . . s.t. the following conditions hold for all i.

(1) ζi is the least ν-signature s.t. l(P,%P)(vi) 6|= ϕζii
(2) (M(vi), ϕi) (M(vi+1), ϕi+1)
(3) ϕi = νX.∗ principal implies that ζi �/ ζi+1

In the following construction of signatures, we will simply show that there are signa-
tures fulfilling all properties disregarding being the least one. Then, we simply select
the subsequent signature to be the least one fulfilling the first property. Note that this
signature then also fulfills all the other properties.

For i = 0 let v0 be the root of P, ϕ0 := ϑ and ζ0 be the smallest ν-signature s.t.

l(P,%P)(v0) 6|= ϕζ00 which exists due the Lemma 3.
For i i+1 we distinguish on the subsequent rule application. Note that is impossible

that vi ends in a sink. If the next rule to be applied is the (Mod)-rule, we distinguish
on whether ϕi = 〈a〉ϕi+1 or ϕi = [a]ϕi+1 which are the only possible cases due to the
construction of T(P,%P). If ϕi = 〈a〉ϕi+1 let vi+1 be the successor of vi following ϕi+1

and note that l(P,%)(vi+1) 6|= ϕζii+1 indeed holds. If ϕi = [a]ϕi+1, select vi ≺ vi+1 s.t.

l(P,%)(vi+1) 6|= ϕζii+1 holds.
Otherwise let vi+1 be the unique successor of vi. Assume that ϕi is principal in the

following rule application since otherwise simply set ϕi+1 := ϕi. Otherwise, if ϕi =
ψ0 ∨ ψ1 let ϕi+1 be the unique successor of ϕi and note that all conditions hold. If

10
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ϕi = ψ0 ∧ ψ1 let j = 0, 1 s.t. l(P,%P)(vi+1) 6|= ψζij and set ϕi+1 := ψj .
If otherwise ϕi = σX.ψ let ϕi+1 be the unique successor of ϕi and note that due to

Lemma 3 there is a signature ζ ′i+1 s.t. all conditions hold.
We finally need to show that it is impossible that ϕi = νX.ψ for some ν-bound

X whenever the respective (FPUν )-rule application does not follow ψ. By contradic-
tion assume that ϕi = νX.ψ principal for some ν-bound X and there is no set
U ∈ AP(vi, νX.ψ) with X 6∈ U . By construction of AP , this implies that there is some
j < i with l(P,%P)(vj) = l(P,%P)(vi), vj = νX.ψ and vj+1 = ψ[νX.ψ/X]. By construction
of the sequence of signatures, it follows that ζj �/ ζj+1 � ζi. But this cannot be the case
with ζj and ζi both being the least ν-signature that falsifies X w.r.t. the same state.

As the modal rule is applied infinitely often in the extracted branch, ϕ0, ϕ1, . . . is an
active thread. Since P is a tableau, ϕ0, ϕ1, . . . is a ν-thread.

Let X∗ be the outermost variable in ϕ0, ϕ1, . . . that is unfolded infinitely often. Let
i∗ be arbitrary s.t. there is no variable Y > X∗ with ϕj = σY.∗ for any j ≥ i∗. Consider
the sequence of signatures ζi∗ � ζi∗+1 � . . . and note that we have:

ζi �/ ζi+1 whenever ϕi = νX∗.ψ and ϕi+1 = ψ[νX∗.ψ/X∗]

Therefore we have an infinitely descending sequence ζi∗ , ζi∗+1, . . . which is impossible
as ordinals are well-founded.

4.3 Completeness

Theorem 6. There is a tableau for a fromula ϑ if ϑ is satisfiable.

Proof. Let ϑ be a closed formula and T = (S,−→, `) be a transition system and s0 ∈ S
be a state s.t. s0 |= ϑ.

We inductively construct a state-labeled pre-tableau as follows. Starting with the
labeled sequence s0 : ϑ, we apply the following rules in an arbitrary but eligible ordering
systematically backwards.

(Or)
s : ϕ0 ∨ ϕ1,Φ
s : ϕi,Φ

(∗) (And)
s : ϕ0 ∧ ϕ1,Φ
s : ϕ0, ϕ1,Φ

(FPµ)
s : µX.ϕ,Φ

s : ϕ[µX.ϕ/X],Φ
(FPUν )

s : νX.ϕ,Φ
s : Φ s : ϕ[νX.ϕ/X],Φ

(Mod)
s : 〈a1〉ϕ1, . . . , 〈an〉ϕn, [b1]ψ1, . . . , [bm]ψm, q1, . . . , qk, p1, . . . , ph

s1:ϕ1,{ψi | a1=bi} s2:ϕ2,{ψi | a2=bi} . . . sm:ϕn,{ψi | am=bi}
(∗∗)

with the following side conditions:

• (∗): For every µ-signature ζ with s |= (ϕ0 ∨ ϕ1)ζ it holds that s |= ϕζi .
• (∗∗): s |= (〈a1〉ϕ1, . . . , 〈an〉ϕn, [b1]ψ1, . . . , [bm]ψm, q1, . . . , qk, p1, . . . , ph) implies for

every i that s −→ai si and si |= (ϕi, {ψj | ai = bj}). Additionally, for every

µ-signature ζ and every i it holds that s |= (〈a〉ϕi)ζ implies si |= ϕζi .

Consider that this construction indeed yields pre-tableau with each state-labeled se-
quence s : Φ satisfying s |= Φ as well as all side conditions due to Lemma 3. Moreover
note that every finite branch ends in a node labeled with [∗]-formulas and consistent
literals only.

11
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By contradiction assume that the pre-tableau is not a tableau, hence there is a labeled
branch s0 : Φ0,s1 : Φ1,. . . (with Φ0 = {ϑ}) and a µ-thread t =t0,t1,. . . with ti ∈ Φi for
all i.

We argue as in the soundness proof that this is impossible.

Putting the soundness (Thm. 5) and completeness (Thm. 6) together yields the fol-
lowing statement.

Theorem 7. Let ϑ ∈ Lµ. Then ϑ is satisfiable iff there is a tableau for ϑ.

5. A Decision Procedure Based on Tableaux

A natural question is: can the tableaux of the previous section be used to decide sat-
isfiability for Lµ? In this section we will show that the answer is positive and compare
the resulting procedure with existing ones. The procedure works as follows. We first
show that pre-tableau branches without µ-threads can be recognized by a deterministic
parity automaton (DPA). The pre-tableaux nodes can be annotated with states of this
DPA resulting in a graph equipped with a parity condition. There are two kinds of
branching in this graph: existential branching corresponding to choices with rule (OR),
and universal branching corresponding to choices between different subgoals. This graph
is finite and forms a parity game (McNaughton, 1993). The question whether or not a
tableau exists for an input formula reduces to the problem of solving this game.

5.1 Automata-Theoretic Machinery

Again, we fix a formula ϑ. It induces an alphabet Σϑ representing transitions from a
goal to a subgoal in a rule application. These symbolic alphabet letter should determine
a subgoal of a given goal uniquely and succinctly. Clearly this can be done by naming
the principal formula, possibly its replacement, as well as the number of the subgoal of
which there can at most be |ϑ| many. It is clearly possible to realize this in an alphabet
Σϑ of size O(|ϑ|3).

With an infinite branch ρ = Φ0,Φ1, . . . of a pre-tableau for ϑ we associate a word wρ ∈
Σω
ϑ in the natural way: the i-th letter of wρ is the symbol representing the application

of the rule between Φi and Φi+1. Let BadBranch(ϑ) be the set of all words representing
an infinite branch in a pre-tableau for ϑ which contains an active µ-thread, i.e. the set
of all branches which may not occur in a tableau.

A nondeterministic parity automaton (NPA) is a tuple A = (Q,Σ, q0, δ,Ω) where Q
is a finite set of states, Σ is the underlying alphabet, q0 ∈ Q is a designated starting
state, δ ⊆ Q× Σ×Q is the transition relation as usual, and Ω : Q → N is the priority
function. A run ρ = q0, q1, . . . on an infinite word w ∈ Σω is defined as usual. It is
accepting if the highest priority occurring infinitely often in Ω(q0),Ω(q1), . . . is even.
Let |A| denote the size of A, measured as its number of states. Its index, idx (A), is the
number of distinct priorities assigned to its states. An NPA as above is deterministic
(DPA) if δ : Q × Σ → Q in effect. A nondeterministic Büchi automaton (NBA) is an
NPA as above with Ω : Q→ 1, 2.

Lemma 8. There is an NPA B′ϑ over Σϑ s.t. |B′ϑ| ≤ 2 · |ϑ|, idx (B′ϑ) ≤ ad(ϑ) + 2, and
L(B′ϑ) = BadBranch(ϑ).

Proof. The NPA simply guesses threads by tracing single formulas from Cl(ϑ) in its state
set. Upon reading an input letter it knows whether the next rule application transforms
the currently traced subformula or whether it remains the same on that thread. In order

12
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to distinguish inactive threads from active threads, the NBA utilizes a bit to indicate
that the focussed thread has been unfolded in the last transition. A parity condition
that reflects the alternation depth of each formula inside Cl(ϑ) can then be used in
order to recognise BadBranch(ϑ).

It is a standard exercise in automata theory to show that every NPA can equivalently
be transformed into an NBA with a quadratic blow-up only.

Lemma 9. There is an NBA Bϑ over Σϑ s.t. |Bϑ| ≤ 2 · |ϑ| · (ad(ϑ) + 2), and L(Bϑ) =
BadBranch(ϑ).

As said above, the goal is to create a parity game as a product of all possible pre-
tableau nodes with the states of a automaton recognizing branches that do not contain
a µ-thread. Hence, complementation of the automaton Bϑ is needed. Moreover, this
automaton needs to be deterministic to ensure that common prefixes of two different
branches can be paired with a single run of the automaton.

Theorem 10 ((Piterman, 2006)). For every NBA B with n states there is a DPA A
with 2O(n logn) states and index O(n) s.t. L(A) = L(B).

Combining this theorem with Lemma 9 yields the following. Note that ad(ϑ) ≤ |ϑ|,
and that if k ≤ n then log(nk) ≤ 2 · log n.

Corollary 11. Let ϑ ∈ Lµ with n := |ϑ| and k := ad(ϑ). There is a DPA Aϑ over

Σϑ s.t. the number of states in Aϑ is bounded by 2O(n·k·logn), its index is O(n · k), and

L(Bϑ) = BadBranch(ϑ).

5.2 Reduction to Parity Game Solving

The algorithmic solution to the satisfiability problem is provided by a reduction to
parity game solving. A parity game is a tuple G = (V, V0, V1, E, v0,Ω) s.t. (V,E) is a
directed graph with total edge relation E and node set partitioned into V0 and V1, v0 is
a designated starting node, and Ω : V → N is a priority function. The game is played
between two players 0 and 1 who push a token along the edges of a the graph starting
in v0. If the token is on a node in Vi then player i chooses a successor node. An infinite
sequence of nodes created in this way is a ply and it is won by player i iff the highest
priority seen infinitely often in this sequence is i modulo 2. A winning strategy is as
usual a strategy for a player that lets them win every play regardless of the opponent’s
choices. We write |G| for the number of nodes in the game G, and idx (G) for its index,
i.e. number of distinct priorities.

Proposition 12. Let ϑ be a formula with n := |ϑ| and k := ad(ϑ). There is a parity

game Gϑ with |G| ≤ 2O(n·k·logn) and idx (G) ≤ O(n · k), that is won by player 0 iff ϑ is
satisfiable.

Proof. Let Aϑ = (Q,Σϑ, q0, δ,Ω). The nodes of the game Gϑ are of the form 2Cl(ϑ)×Q;
the designated node v0 is ({ϑ}, q0). A node w = (Ψ, q′) is a successor of v = (Φ, q) if a
uniquely (for (Φ, q)) chosen rule is applied to Φ that yields Ψ as one of its premisses,
this rule is represented by r ∈ Σϑ and δ(q, r) = q′ where δ is the transition function
of Aϑ. The node ownership in the game is determined by these uniquely chosen rules:
player 0 owns nodes in which rule (Or) is applied, while player 1 owns all the other
nodes. Finally, the priority of a game node (Φ, q) is simply Ω(q).

It is not hard to see that winning strategies for player 0 exactly correspond to tableaux
for ϑ. Hence, with Thm. 7, player 0 wins node v0 iff ϑ is satisfiable.

13
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Aut Tab GameG Game

unguardedness welcome yes no no yes

worst-case runtime 2O(n2m2 logn) 2NExpTime 22O(n)

2O(n2k2 logn)

small model property 2O(nm logn) 22O(n)

22O(n)

2O(nk logn)

branching-degree n 2O(n) 2O(n) n

implemented no no yes yes

Figure 3. Comparison of different decision methods on formulas of size n and alternation depth k and number
of least fixpoint variables m.

Proposition 13. Satisfiability of a Lµ formula ϑ with n := |ϑ| and k := ad(ϑ) can be

decided in time 2O(n2·k2·logn).

Proof. Follows immediately from Prop. 12 with the fact that the asymptotically best
known algorithms for solving parity games run in time mO(p) where m is the number of
nodes and p is the number of priorities in the game (Schewe, 2007).

The subgame induced by a winning strategy for player 0 is in effect a model for ϑ.
This immediately yields a small model property for Lµ.

Proposition 14. Let ϑ ∈ Lµ with n := |ϑ| and k := ad(ϑ). If ϑ is satisfiable then it

has a model of size 2O(nk·logn) and branching-degree at most n.

5.3 Comparison

We compare the presented method (Game) to existing methods, namely the automata-
theoretic one by Emerson et al. (Aut) (Streett & Emerson, 1989; Emerson & Jutla,
2000) and the purely tableau-based one by Jungteerapanich (Tab) (Jungteerapanich,
2009). Additionally we consider the method which works as described above but uses pre-
transformation into guarded form and rule (FPGν ) instead (GameG). The input formula
is parameterized by its size n, its alternation-depth k, and the number of distinct µ-
bound variables in it m. Note that we always have k ≤ m < n.

The reasoning behind the run-time and small model property of method Aut are as
follows. A formula ϑ of size n with m µ-bound variables can be translated into a Streett
automaton of size 2O(n·m·logn) and O(n·m) acceptance pairs (Streett & Emerson, 1989).1

Emptiness of a Streett tree automaton with s states and p pairs can be decided in time (s·
p)O(p) (Emerson & Jutla, 2000), hence the worst-case runtime of 2O(n2·m2 logn) observing
that m < n. This uses an equivalence-preserving reduction from Streett automata of
that size to Rabin automata of size s2 with p pairs (Emerson & Jutla, 2000). Every Rabin
tree automaton with e edges and p pairs accepts a tree that is finitely representable with
O(e) nodes (Emerson, 1985). In this case, we have e = O(n ·m · s2) because a transition
to a tuple of size j counts as j edges, and the branching-degrees of these automata are
linear in the size of the original formula. Putting this all together, we obtain a small
model property of 2O(n·m·logn).

It is worth mentioning that conceptually, the method presented here is very close to the
purely automata-theoretic method Aut. However, separating the local and global con-
sistency checks into pre-tableau rules and automata-theoretic machinery for the thread
structure in tableaux yields a cleaner presentation of the method’s ingredients. The

1Emerson et al. claim that the global automaton used in their construction is of linear size n, but its description
shows that it really is of size n ·m.
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slight asymptotic speed-up using the exponent k instead of m where k ≤ m is owed to
using the more modern concept of parity automata rather than Streett automata.

There is also a notable difference between the method presented here and the
automata-based Aut. Both can deal with unguarded formulas in their input. How-
ever, here we presented a method that handles unguarded formulas correctly whereas
the work behind Aut handles unguardedness with a definition on what an acceptable
Hintikka set is. It does not show how such Hintikka sets can be detected algorithmi-
cally. A näıve approach boils down to examining all cycles in a directed graph for the
occurrence of some edge on this cycle.

The main advantage of Tab is the fact that tableaux in that calculus are finite as
opposed to the infinite ones used here. The price to pay for this seems to be the non-
optimal complexity bound. It is not clear whether there is also a deterministic algorithm
for that calculus and whether it can be made to work on unguarded formulas as well
thus losing one exponential in worst-case runtime and small model property.

Finally, we remark that the reduction to parity game seems to be the only one that
has been implemented in a tool (Friedmann & Lange, 2010).

6. Experimental Results

In this section we describe hand-crafted benchmarks given by families of unguarded for-
mulas in order to evaluate the differences between the decision method that transforms
the formulas into guarded form first (GameG), and the method that operates directly
on arbitrary formulas (Game).

All tests have been carried out on a 64-bit machine with four quad-core OpteronTM

CPUs and 128GB RAM space, using MLSolver (Friedmann & Lange, 2010). The
implementation does not (yet) support parallel computations, hence, each test runs on
one core only and needed less than 4 GB RAM.

We only present instances of non-negligible running times. On the other hand, the
solving of larger instances not presented in the figures anymore has experienced time-
outs after one hour, marked †.

Benchmark 1. Consider the following family of formulas ϕn.

ϕn := νX1.µX2. . . . σXn.

(
n∨
i=1

Xi ∨ 〈a〉
n∧
i=1

Xi

)

Each of these formulas is equivalent to tt, hence, trivially satisfiable. Nevertheless, they
are chosen because they feature a high degree of unguardedness.

The first table in Fig. 4 presents the experimental data collected from checking each
ϕn for satisfiability. The first column states the formulas’ indices, the second block
of columns shows the formulas’ sizes. By ϕGn we denote the guarded formula that is
equivalent to ϕn according to Prop. 1. Note that the transformation into guarded form
does increase the formula non-negligibly, and this increase results in a significant loss
of performance of the subsequent satisfiability test, as shown by the next two blocks of
columns.

The columns labeled |Bϕ|, |Aϕ| and |Gϕ| show the sizes of the nondeterministic thread-
finding automaton Bϕ according to Lemma 9, the complemented deterministic automa-
ton Aϕ according to Cor. 11, and the resulting parity game Gϕ according to Prop. 12
on the input formula ϕ respectively.
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formula GameG Game

n |ϕn| |ϕGn | |BϕGn | |AϕGn | |GϕGn | time |Bϕn | |Aϕn | |Gϕn | time
1 6 6 0 1 4 0.00s 0 1 4 0.00s
2 12 19 8 58 109 0.00s 7 62 63 0.00s
3 18 105 43 816 1, 917 0.02s 10 96 102 0.00s
4 24 2, 177 2, 748 387, 914 775, 815 32.18s 25 524 543 0.01s
5 30 - - - - † 31 781 800 0.00s

formula GameG Game

n |ψn| |ψGn | |BψGn | |AψGn | |GψGn | time |Bψn | |Aψn | |Gψn | time
1 32 40 15 88 147 0.00s 13 73 269 0.00s
2 48 124 70 862 5, 519 0.04s 25 237 2, 045 0.02s
3 64 496 435 18, 393 1, 187, 885 28.73s 41 621 12, 394 0.15s
4 80 - - - - † 61 1, 489 70, 014 1.39s

Figure 4. Deciding unguarded formulas in practice.

Benchmark 2. Consider the following families of regular expressions αn and βn.

α0 = a∗ β0 = b∗

αn+1 = (αn ∪ b)∗ βn+1 = (a ∪ βn)∗

For n ≥ 1 we have L(αn) = L(βn) because both describe the language Σ∗ in a cumber-
some way. Thus, the PDL formula 〈αn〉q → 〈βn〉q is valid; equivalently 〈αn〉q∧¬〈βn〉q is
unsatisfiable. Translating this family of PDL formulas into the modal µ-calculus yields
the family ψn = ψ′n(q) ∧ ψ′′n(¬q) where

ψ′n(Z) =

{
µXn.Z ∨ 〈b〉Xn ∨ ψ′n−1(Xn) if n > 0

µX0.Z ∨ 〈a〉X0 otherwise

ψ′′n(Z) =

{
νYn.Z ∧ [a]Yn ∧ ψ′′n−1(Yn) if n > 0

νY0.Z ∧ [b]Y0 otherwise

Note that each of these is alternation-free but, again, features a high degree of unguard-
edness.

The second table in Fig. 4 presents experimental data collected from checking ψn, n ≥
1 for unsatisfiability. As before, the table presents the original formula size and the size
of an equivalent guarded formula as well as the sizes of the automata and parity games
involved in the decision procedure. Again, it is evident that guarded transformation is
harmful in this case since the checking of the unguarded original formula scales much
better.

7. Conclusion

We have presented a tableau calculus which is sound and complete for the entire modal
µ-calculus, not just guarded formulas. The experiments presented in the previous section
suggest that deciding unguarded formulas directly is preferable over using an explicit
transformation into equivalent guarded formulas. The deal breaker is the unsettled ques-
tion of whether or not there is an efficient way of performing such a transformation. So
far, the best known transformations are exponential in the size of the formula, and it
is reasonably unlikely to find a transformation that is polynomial in that size (Bruse et
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al., 2013).
A closely related issue is what is known as the nested-star problem in PDL. Some

decision procedures for PDL – a fragment of the alternation-free modal µ-calculus –
have been found to not handle formulas which contain programs with nested stars cor-
rectly, for instance the one implemented in the tool pdl-tableau1. The rule that handles
unfoldings of greatest fixpoint formulas for unguarded µ-calculus formulas can be spe-
cialised to handle nested stars in decision procedures for PDL satisfiability correctly.

[α∗]ϕ,Φ
Φ ϕ, [α][α∗]ϕ,Φ

On the other hand, there is a simpler way of dealing with unguardedness in PDL. One
just has to require that for every subprogram of the form α∗ occurring in the input,
the language of α does not contain the empty word. It is a simple exercise to transform
all programs at a linear blow-up in order to meet this requirement. Then, stars can be
nested and the effects that cause such decision procedures to fail will not occur anymore.

An interesting question is the following. Is there a polynomial or even just linear
guarded transformation into equi-satisfiable formulas? Such a transformation would not
necessarily yield equivalent guarded formulas but it would be enough to be used as
a pre-processing step in decision procedures for satisfiability or validity of the modal
µ-calculus.
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